StatsBeginner: 初学者の統計学習ノート

統計学およびR、Pythonでのプログラミングの勉強の過程をメモっていくノート。たまにMacの話題。

大学教員が最近の学生をみて感じるカルチャーショック10選

民間企業で10年働いてから大学に転職して、8年が経ちました。自分が大学生だった20年前と比べてのカルチャーショック、ジェネレーションギャップのまとめ(決定版)です。
 

第10位 授業にちゃんと出席している

最近の大学生は、とにかく授業に出席します。
いや当たり前だろと言われそうですが、昔の大学は出席管理が甘かったので、語学や体育のように出席を重視している一部の科目と、話が面白いと思える授業だけ出席して、あとの授業はレポートや試験だけ何とか頑張るというスタイルが割と一般的だったと思います。
周りの教員に聞いてみても、そういう人けっこういますね。
なので個人的には、自分がやってる授業でも出席なんて取らずに興味ある人だけ聴いてればいいと思うのですが、最近はしっかり管理しないと大学から怒られます。文科省が厳しいらしいです。
 

第9位 20歳になるまで酒を飲まない

最近の大学生は、法律を守ります。
私ぐらいの世代だと、まず初めての「飲み会」が高校1年の6月の体育祭の打ち上げでした。昔は、居酒屋にせよ、コンビニや酒屋にせよ、年齢確認とかなかったですし、教師も黙認してましたよね。
大学に入ると、清楚で真面目な女の子とかも、周りに合わせてふつうに飲んでたと思います。現役で入った1年生は18-19歳ですが、サークルの新歓とかに行けば酒を飲むのが普通だったと思います。
一方、今の大学生は、20歳になるまで飲まないという人が多いみたいです。真面目になったような印象ですが、そもそも昔に比べると飲み会自体が少ないし、酒を飲みたいというモチベーションもべつになさそうではありますね。
 

第8位 読書量が少ない

最近の大学生は、昔に比べると、読書量が少ないと思います。
特に、いわゆる教養書を読まなくなっていますね。私が教えてる工学部ではもともと本を読まないのは普通なのですが、とある文系学部(偏差値が国内最高だった時代もある)の先生に聞いたところ、最近の学生に「最近読んだ面白い本は?」と聞くと、池上彰の解説本とかを挙げてきて驚いたそうです。
昔の文系学部だと、『必読書150』に出てくるような岩波文庫の古典を片っ端から読んでいく……というのは大げさにしても、読んだフリができる程度にはつまみ食いしておくとか、そういう感覚があったと思います。
一方、今の大学生は、成績が優秀な層でも、「◯◯ぐらいは読んでいないと恥ずかしい」「解説書に頼ったことは人に隠しておく」という感覚があまりないようですね。
私が大学生の頃、ゼミの先生から、「教養書(典型的なイメージとしては岩波文庫や中公新書)は1週間に1冊ぐらい読んでいれば大学生として及第点」と言われたのを覚えています。自分では1日1冊を目標にしていて、結局サボるので平均すると2〜3日に1冊になってたと思いますが、大学生は週1ぐらいでそういう本を読んだほうがいい気はします。
 

第7位 教員を見下さない

最近の大学生は、教員を見下したりしないです。
昔はどうだったかというと、熱心な学生ほど教員を小馬鹿にしているようなところがあって、「あの先生はじつは本質を分かってない」「あいつは所詮左翼だから」「この授業の説明は古い」とかよく文句を言っていたと思います。
もちろん、今もそういう学生はいるのですが、昔に比べたらだいぶ少なくなってるんじゃないでしょうか。表に出さないので私の目に入ってこないだけ、という可能性はあるのですが、どうもそういう感じでもなさそうなんですよね。
優秀な学生でも、教師の言うことを素直に信じているという印象です。もう少し反骨心があってもいいかも知れません。
 

第6位 (笑)でもwでもなく笑

最近の大学生は、「笑」を直接語尾にくっつけます
括弧とかは付けません。

「先生そんなことも知らないんですか笑」

というふうに使います。
2個並べるときは、

「先生さっきチャック開いてました笑笑」

となります。
我々のような2ちゃんねる世代は「w」も使いますが、今の学生は全く使わないですね。
ちなみに私は、(笑)を変換辞書に登録したので(笑)を基本につかっています。
 

第5位 授業中に講義スライドの写真を撮る

最近の大学生は、講義中に教員が投影しているスライドを、スマホで撮影します。
撮っていいか確認したりもせず、当たり前のようにパシャパシャ撮影します。
私自身は撮られても構いませんし、「熱心に聴いてるやん」ぐらいに思うのですが、本来は、他人のプレゼンテーションを撮影していいかどうかは事前に確認するのがマナーですよね。一般の講演会とか企業の打ち合わせなどでは、著作権や機密情報への配慮も必要なので、勝手に撮るのはNGです。
最近、そういう一般常識を知らずに学生が社会に出るのも問題だなと思ったので、今後は、一応そういう一般的なマナーを教えた上で、私のスライドは自由に撮っていいと伝えようと思います。
 

第4位 格闘技に興味がない

最近の大学生は、格闘技には興味ないです。
私が学生だった頃は、K-1とかPRIDEとかがゴールデンタイムに地上波で流れていたので、特段「格闘技好き」というわけではない人も割と観てましたが、今の学生は全く観ないようです。
ここ数年、BreakingDownがバズってますし、格闘技選手のYouTubeチャンネルなどもかなりメジャーになっているので、てっきり学生たちも朝倉未来とか安保瑠輝也とか平本蓮とかの動向を知ってるのかと思いきや、驚くほど、まったく話が通じません
そういえば、学生をフィールドワークに連れていく少人数制の授業があるのですが、一昨年(2023年)、その履修者に「大晦日のRIZIN、チケット代は無料でいいので行きたい人いますか?」と募ったら、希望者ゼロでした。1枚33,000円のチケットを私費で4枚取ってたので、ふつうに友人と行きました(笑)
 

第3位 男子でも免許はAT限定

最近の大学生は、クラッチ操作ができません。
私が大学生の頃だと、男子は9割以上がMT免許を取り(ただしクルマを買うなら9割がAT車)、女の子は逆に9割がAT限定免許という感じでしたが、今は男子でも8-9割ぐらいがAT限定のようです。
免許の取得率そのものは、それほど低下はしていない印象です。3回生向けの交通工学の授業を担当しているので、毎年学生に手を上げてもらってるのですが、7-8割の学生が免許は取っています。
しかしクルマを買いたいという人は稀で、学生のうちに取っとくのが無難だから取ってるというだけですね。
 

第2位 就活時期が早い

最近の大学生の就活は、早いケースでは2回生の12月頃から始まります。
3回生の4〜8月ぐらいに、外資系コンサル、投資銀行、メガベンチャーあたりの有力どころのインターンがあるのですが、それに受かるためには「選抜コミュニティ」という、就活戦闘力最高レベルの意識の高い学生が集まるサークルみたいなやつに所属する必要があります。いや、べつに所属しなくてもいいんですけど、私が話を聞いている範囲では、内定まで取れる学生の8-9割ぐらいはその種の選抜コミュニティに所属してますね。
選抜コミュニティは、SPIやケース面接の対策のための互助会でもあるし、人脈づくりの場にもなっています。
選抜コミュニティ自体が、誰でも入れるわけではなく見込みのある学生しか入れてくれないので、その準備を2回生の12月ぐらいからする人もいるわけです。
なお、早ければ3回生の8月頃に内定が出てしまうので、就活にかけている時間自体がめちゃめちゃ長いというわけでもないですね。内定が早い人は、残りの1年半ぐらい学業と遊びに専念できます。
 

第1位 忙しそう

最近の大学生は、とても忙しいようです。
これ、大学の教員はみんな感じていると思うのですが、「えっ、学生ってそんな忙しいもんだっけ!?」と不思議に思ってしまうほど、みんなスケジュールの空きがないんですよね。
学生に何かを頼んだり誘ったりすると、「月末まで余裕がありません」みたいなことがけっこうあります。
何がそんなに忙しいのかいまいちわからなくて、教員から見るとけっこう「謎」です。学生も、教員から「学生がそんなに忙しいわけないだろ」と不思議がられているということは知らないと思うので、お互いの認識ギャップを埋めるためにも、何らかの調査が必要なんじゃないかと真面目に思っています(笑)

  1. 教員自身も、自分が学生だった頃はバイトとか入れまくっていて空き時間がなかったのを、忘れているだけ。
  2. 実際に、最近の学生は昔の学生より忙しい。
  3. 教員の依頼を断るために忙しいフリをしている。

と、いろいろ可能性が考えられるのですが、私の仮説は1ですね。自分が何かを頼む側になった時に、都合よく「学生は暇なはず」と思い込むバイアスが働いているのではないかと思っています(笑)

「社会課題」という日本語への違和感

学生のレポートや、就職活動のために書いているエントリーシートの作文などを見ていて、「社会課題」という言葉がよく使われるのが前から気になっていました。「この技術はさまざまな社会課題の解決に貢献し得る」みたいな。


おかしな日本語なのかと言われると、べつにそうでもないんだろうと頭では思うんですが、「そんな言い方しなくない?」って個人的には感じてしまいます。
「社会的な課題」とか「社会の課題」とか言うほうが普通だろうと。
「社会課題」という短縮の仕方は、「学校の宿題」を「学校宿題」と略しているような感じがして、気持ち悪いんですよね(笑)
「社会的課題」だと、まだ自然に感じます。理由はよくわかりませんが。


で、調べてみたら、「社会課題」という言い回しはここ10年ぐらいで急に増えたようです。
以下は、日経テレコン21という新聞記事のデータベースで、日経・朝日・毎日・読売・産経の記事を5年ごとに検索して、「社会課題」を含む記事の件数を、総記事数で割って、10万件あたりの数字に直したものです。



まぁ、個人的に気持ち悪いだけで、それなりに市民権を得ている表現ではあるようなので、学生に「使うな」とまで指導はしませんが、俺と同じように感じてる人けっこういるんじゃないかな〜?


あ、関係ないけど「自分ごと」という日本語は「使うな」と指導しています(笑)*1

*1:カギカッコをつけたりして「あえて」書いてる感を出しながら使う分にはあり。市民権を完全に得ているわけではない新しい日本語を、かたい文章の中で当たり前のように(市民権を得きっていないことを知らずに)使ってしまうと、子供っぽく見えるので。

researchmapに一括登録するためのcsvをエクセルから生成するツール

以前、researchmapに一括登録するためのcsvをエクセルからの変換で生成する方法についてのエントリ(リンク)を書いてましたが、Pythonのスクリプトとシェルスクリプトに分かれていたり、スクリプトを置く場所を気をつけないといけなかったり、Windowsの人とツールが共有できるか謎だったりしたので、ブラウザで動かせるようにJavascriptにしました。
ごく簡単な内容で、ポイントとしては、

  • CSVの1行目はデータではなく識別コードを記載する(下記コードのfilePrefixの部分)
  • すべてのデータを""で囲む
  • アブストラクトのコピーも登録する場合、セル内で改行が発生する場合があるので、念のため改行コードをそろえるようにしておく

程度ですね。
1つのエクセルファイルに「rm_published_papers」(論文)や「 rm_presentations」(口頭発表)などのシートを設けておいて、それを全部読み込んで個別にCSV化(すべてのCSVを1つのzipファイルにまとめて出力)するという内容です。
 

<!DOCTYPE html>
<html lang="ja">
<head>
  <meta charset="UTF-8" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  <title>researchmap CSV 変換ツール</title>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/xlsx/0.18.5/xlsx.full.min.js"></script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/PapaParse/5.3.2/papaparse.min.js"></script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/jszip/3.7.1/jszip.min.js"></script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/FileSaver.js/2.0.5/FileSaver.min.js"></script>
  <style>
    body { font-family: sans-serif; padding: 2em; }
    h1 { font-size: 1.5em; margin-bottom: 1em; }
    input, button { margin-top: 1em; display: block; }
  </style>
</head>
<body>
  <h1>researchmap CSV 変換ツール</h1>
  <input type="file" id="excelFile" accept=".xlsx" />
  <button onclick="handleConvert()">CSVへ変換(ZIP出力)</button>
  <p id="status"></p>

  <script>
    const sheetConfig = {
      rm_published_papers: "published_papers",
      rm_presentations: "presentations",
      rm_books_etc: "books_etc",
      rm_research_projects: "research_projects",
      rm_teaching_experience: "teaching_experience",
      rm_media_coverage: "media_coverage",
      rm_industrial_property_rights: "industrial_property_rights",
      rm_awards: "awards",
      rm_committee_memberships: "committee_memberships",
      rm_misc: "misc"
    };

    function handleConvert() {
      const fileInput = document.getElementById('excelFile');
      const status = document.getElementById('status');
      const file = fileInput.files[0];
      if (!file) return;

      const reader = new FileReader();
      reader.onload = async (e) => {
        const data = new Uint8Array(e.target.result);
        const workbook = XLSX.read(data, { type: "array" });
        const zip = new JSZip();

        Object.entries(sheetConfig).forEach(([sheetName, filePrefix]) => {
          const sheet = workbook.Sheets[sheetName];
          if (sheet) {
            const json = XLSX.utils.sheet_to_json(sheet, { defval: "", raw: false });
            let csv = Papa.unparse(json, { quotes: true });
            csv = csv.replace(/\r?\n/g, "\r\n"); // 改行コードをCRLFに統一
            const content = `${filePrefix}\r\n${csv}`;
            zip.file(`${filePrefix}.csv`, content);
          }
        });

        const blob = await zip.generateAsync({ type: "blob" });
        saveAs(blob, "researchmap_csvs.zip");
        status.textContent = "CSVファイルをZIPで出力しました。";
      };
      reader.readAsArrayBuffer(file);
    }
  </script>
</body>
</html>

西部邁とAI

 あるところで西部邁という人のむかしの仕事について、短い論評を書く機会があったのだが、字数制限があったので省略していた論点についてメモしておきたい。


 西部邁はもともと東大の経済学者で、ある揉め事があって東大を辞めてからは「保守派の評論家」としてテレビなどで活躍するのだが、東大を辞めるちょっと前の時期に、パーソンズの構造機能主義を言語学に引き寄せて再解釈しつつ、それを拡張して社会科学の基礎理論を組み立てようという取り組みを行っていた。
 で、中味についてここでは詳しく紹介しないが、彼の考えた言語の意味論*1のモデルというものがある*2。西部の読者には「TEAM図式」として知られているもので、このモデルは突き詰めれば、人間の言語が、意味の「差異化と同一化」「顕在化と潜在化」という2対の機能の組み合わせで成り立っているという仮説に立脚している。多くの読者は、T(伝達)・E(表現)・A(蓄積)・M(尺度)の4点セットを提案したことだけ覚えていて、その4つもこれら2対の機能の組み合わせから生まれているという話は忘れていると思うのだが、個人的にはそっちのほうが大事だと考えている。
 その理由の一つは、「最小限の原理(規則)」から出発し、そこから機能が「分化」していくプロセスとして人間の言語のはたらきの全体像を捉えようとする思考法が、何かとっても包括的で気持ちいいからである。もう一つの理由は、今の機械学習AIによる自然言語処理も、「差異化と同一化」「顕在化と潜在化」という2つの機能の組み合わせとして解釈することで、有意義な理解が得られるような気がしたからだ。ここでメモしておきたいのは後者のことである。


 たとえばChatGPTなどのベースになっているTransformerは、単語(正確にはトークンといわれる、文字と単語の間みたいなものだが)の埋め込み空間から処理がスタートする感じになっているが、埋め込み空間というのは、それぞれの単語の意味を現実世界に存在する事物との対応(いわゆる記号接地)によってではなく、単語と単語のベクトル空間上の位置関係によって表現している。この空間内では、ある記号の意味*3というものは、いわば「他の記号と、どの観点で、どれだけ異なっているか/似ているか」だけで評価されており、これは「差異化/同一化」の原理に立脚しているといえる。


 また、西部邁が持ち出したもう一つの原理である「顕在化/潜在化」は、機械学習AIの学習プロセスに対応していると思えばいいと思う。ニューラルネットの学習は、

  1. 入力が与えられる
  2. 適当なパラメータに基づいて計算して何か出力する
  3. その出力が誤差関数により評価される
  4. パラメータをよりよいものに更新する

というステップで進んでいくわけなのだが、これは、何かを表現(顕在化)した上で、現実からフィードバックを受け、その教訓をパラメータの集合の中に蓄積(潜在化)していく過程だということができる。


 ちなみに先ほど、西部邁は最小限の原理で言葉のはたらきの全体を包括しようとしたという話をしたが、生成AIの「生成」という言葉はもともと、それに似た意味の数学用語から来ている。生成AIの生成は直接的には「生成モデル」から来ており、群論でいう「生成元」などよりも創造的なニュアンスが強いのだが、それでも、「具体的な事物がすべてそこから表れてくるような、大元となる抽象的な要素と規則」を重視する点で本質的には同じような発想である*4


 ……だから何なのという話ではあるのだが、人間を理解するために提案された理論が、機械学習AIの原理にもけっこう当てはまるというのは個人的に面白いく感じるので、そういうのをもっと考えていきたいと思っている。

*1:意味論というより、言語行為の機能論ぐらいに言っておくほうが適切な気はする。

*2:とりあえずのアイディアとして素描されたという感じのもので、学問的に精緻化していく努力は、西部によっても他の人によっても行われなかったが。

*3:正確には、意味は文脈に依存して決まるので、文脈の中で意味が与えられる前の素材のようなものだが。

*4:もともと識別モデルと生成モデルという区別があって、生成モデルの特徴は「同時分布」というものを推定するという点で、これは「最小限」というニュアンスはあまりないものの、生成される可能性がある全てのものの構造と分布を捉えるという「包括性」の意味はある。

頻度主義の「統計的仮説検定」についての理解度チェック

うちは工学部で、4回生になると研究室に配属されて卒論のための研究が始まるのですが、その段階で統計データの分析をしなければならないので、研究室内で毎年春から夏にかけて、統計学の基本的な理論とRのコードの書き方の勉強会が行われています。
で、この勉強会の1回目あたりで扱う「統計的仮説検定」についての理解(本質的な意味が分かっているかどうか。まぁ私も分かっているかどうか怪しいですが。)をチェックするための質問をいくつか考えているのですが、他にもっと良いものありますかね?どうでしょう。

  1. サンプル数とサンプルサイズの違いは?*1
  2. t分布とF分布について、どのような確率分布であるか、「グラフ」と「(α値付きの)分布表」をどちらも使ってみんなに説明できますか?α値とp値の関係が分かることと、両側確率、片側確率の違いがわかることが必須です。*2
  3. t分布が発見されたことによって、われわれは何ができるようになった?ハンドルネーム「student」氏はどこがすごい?
  4. 自由度って何が自由なん?*3それ計算して何が嬉しいん?*4
  5. p値って何の確率なのか、正確に説明できますか?*5
  6. 95%信頼区間って、何が95%なん?*6
  7. 統計的仮説検定でp値が小さくなりやすく(有意になりやすく)なるのはどういう時?ついでに検出力の話もできれば完璧。
  8. 不偏推定量と一致推定量の違いは?
  9. p<.05が有意水準としてひろく採用されているのはなぜか知ってる?*7
  10. 平均値と標準偏差が報告されている基本統計表をよく見るけど、標準偏差からは何が分かる?*8

*1:しょうもないけど、母集団からサンプリングするというイメージを確認するため。

*2:ソフトの使い方の解説を重視した簡単なテキストだと、分布表とか載ってないことがあるので、これをやらせるのは意外と大事。

*3:これは答えやすい

*4:これは答えにくい

*5:教員でもつい「帰無仮説が真である確率」みたいな間違ったことを言ってしまう人が意外といます。

*6:ベイズ信用区間みたいな捉え方をしていないかの確認。

*7:内容的にはただのウンチクですが(笑)、ここに疑問を持たない学生は物事を本質的に理解しようとする態度が足りないと思うので、案外重要。

*8:いろいろ言えるけど、標準偏差を上下に2個分でだいたい95%になり〜みたいな話ができるといい。

不偏分散の分母がn-1である理由の直観的な理解

統計学初学者の超あるあるネタなので、くどくど説明しませんが、件名の通りです。
で、これをChatGPTに説明させてみたら、概ね以下のような趣旨の説明をしていて、けっこう腑に落ちる感じがしました。

データポイントが n 個あるとき、それを「n次元空間」に配置して考えることができる。ただし、「平均で中心化されたデータ」は、1次元少ない空間上に存在することになる。したがって、そのデータのばらつき(広がり)を評価する際は、n−1 次元上でのばらつきを計算すべき。

注意が必要なのは、普通はたとえば1000人の学生の体重のデータが得られた場合、体重という1つの(1次元の)変数に関して1000個のサンプルが得られたというふうに捉えるけど、ここでは1000個の(1000次元の)変数に関して1つずつ値が得られたというふうに捉え直している点。
1000次元空間上の1点に今回得られたデータセットが配置されるというイメージだと、「1つの点のばらつきって??」となって混乱しそうなところがトリッキーではある。
1000次元の空間上の1点として1つのデータセットが表現されることになるわけだけど、そのデータセットが、xy平面でいうところのy=x(いわゆる45度線)からどれだけズレているかで、データのばらつきを表す発想だと言い換えてもいいと思う。*1
「平均で中心化された結果として、1次元小さい空間にばらついている」というのも、具体的にイメージするのが難しく、次元というよりはランクと言ったほうがいいのかも。


【追記】
あとで考えたのだが、1回のサンプリングで得られたデータがn-1次元空間にばらつくのではなく、サンプリングを何回も繰り返したときに、そのサンプルのばらつきがn-1次元空間に収まるということで、これは図示すればわかりやすい。
サンプルサイズ3のデータをサンプリングして、3次元空間に描画するというのをランダムにやると、当然立体的にまんべんなく分布するのだが、平均や合計が特定の値になるように制約を置くと、平べったく平面上に分布する。
平均値を固定して何回もサンプリングするという話と、今回たまたま得られたデータの平均値を「正」として分散を計算するという話のつながりを意識しないといけないので、頭がこんがらがってくるが。

*1:n次元の空間にランダムに生成されたデータの45度線からの距離は、nの平方根に比例し、次元が大きいほどばらつきは大きくなる。

DeepSeekが深読みしすぎていて面白い

推論能力(多段階のロジックなどが必要な場合でも正しい答えを出す能力)の高さを謳っている最近のLLMは、ユーザーの質問に対してすぐに回答を返すのではなく、いったん生成した回答について内面的な反省を繰り返してから、ユーザーに返答するようになっていると言われます。OpenAIのo1などはそのプロセスを伏せているのですが、DeepSeekはその部分も「内なるつぶやき」みたいな感じで全て可視化してくれているので、見ていて面白いです。



たとえばさっき、「以下の数列の次の値を予想してください。全て日本語で考えてください。」という質問を打ち込んで、具体的にどのような数列なのか与えるのを忘れてしまいました。
そしたらDeepSeekが悩みすぎて、1分半ぐらいかけて、以下のようにめちゃめちゃ長い「内なるつぶやき」が出てきました。
「ただし、もしかしたらトリックのような問題かもしれません。」から、異常な深読みが始まります。

では、問題を解くために、まずは与えられた数列のパターンを見つけ出そうと思います。でも、ここで一つ問題があります。ユーザーが具体的な数列を提示していないんです。これでは通常、次の項を予測することはできません。

もしかしたら、ユーザーは質問の入力時に数列の数値を書き忘れたのかもしれません。例えば、「1, 3, 5, 7, 9...」のような数列を想定していた可能性があります。あるいは、別のパターンがある数列かもしれません。でも、具体的な数字がないので、どうしようもありません。

まず、ユーザーに数列の具体的な数値を確認する必要があるでしょう。しかし、現在の状況では、ユーザーが日本語で考えて回答するように指示しているので、その流れに沿って対応しなければなりません。

考えられる可能性として、ユーザーが質問の際に数列を入力し忘れたということがあります。あるいは、以前の会話で既に数列が提示されていて、その続きを尋ねているのかもしれません。しかし、この会話履歴を見る限り、そのような情報はありません。

そこで、このような場合の対処法として、一般的な数列の例を挙げて説明するか、あるいはユーザーに数列の具体的な数値を尋ねる必要があります。しかし、ユーザーは「以下の数列」と言っているので、おそらく何らかの数列が存在するはずです。しかし、実際のメッセージには数列が記載されていません。これは入力ミスの可能性が高いです。

ただし、もしかしたらトリックのような問題かもしれません。例えば、「以下の数列」という言葉自体が問題の一部で、例えば「以下」という言葉に関連する数列を考えさせるのかもしれません。例えば、「以下」の文字数を数えると、「以下」は2文字なので、2から始まる数列かもしれません。しかし、これはかなり強引な解釈です。

あるいは、問題文自体が数列の一部になっている可能性もあります。例えば、問題文の文字数や単語数が数列を形成しているかもしれません。問題文を日本語で数えると、「以下の数列の次の値を予想してください。全て日本語で考えてください。」という文章の文字数は、全角文字として数えると、それぞれの文字数はどうなるでしょうか?

まず、問題文を分解してみます。「以下の数列の次の値を予想してください。全て日本語で考えてください。」という文の文字数を数えます。句読点も含めると、以下のようになります:

「以」1

「下」2

「の」3

「数」4

「列」5

「の」6

「次」7

「の」8

「値」9

「を」10

「予」11

「想」12

「し」13

「て」14

「く」15

「だ」16

「さ」17

「い」18

「。」19

「全」20

「て」21

「日」22

「本」23

「語」24

「で」25

「考」26

「え」27

「て」28

「く」29

「だ」30

「さ」31

「い」32

「。」33

つまり、33文字です。しかし、この文字数が数列に関連しているとは思えません。あるいは、単語数かもしれません。「以下の 数列 の 次の 値 を 予想 して ください 。 全て 日本語 で 考え て ください 。」で単語数は15程度ですが、これもパターンを見つけるのは難しいです。

他に考えられるのは、問題文が何かのジョークや言葉遊びである可能性です。例えば、「以下の数列」という部分に注目して、「以下」の「以」の文字コードや画数を使うなどです。「以」の画数は4画、「下」は3画、合わせて7画かもしれませんが、これも推測の域を出ません。

もしくは、ユーザーが何らかのエラーで数列を入力できていない状況です。その場合、回答として数列の不足を指摘する必要がありますが、ユーザーは日本語で考えるように指示しているので、その点を考慮しつつ、丁寧に数列の提示を求めるべきかもしれません。

しかし、現在の状況では、ユーザーが実際に数列を提示していないため、適切な回答ができません。通常、このような場合は「数列が記載されていませんので、具体的な数値を教えてください」と返答するのが適切です。しかし、ユーザーは「全て日本語で考えてください」と指定しているので、その指示に従いながら、問題の不備を指摘する必要があります。

ただし、この問題がテストやクイズとして出題されている場合、例えば「以下の数列」という言葉自体が数列の一部で、言葉の文字数や何らかの規則性がある可能性もゼロではありません。例えば、「以下の数列」の各文字の画数を見てみます:

「以」:4画

「下」:3画

「の」:3画

「数」:13画

「列」:6画

これらを並べると、4, 3, 3, 13, 6 という数列になります。この次の数値を予想する問題かもしれません。しかし、この数列の規則性を見つける必要があります。

4, 3, 3, 13, 6...

この数列のパターンを見つけようとします。まず、4から3へは-1、3から3は±0、3から13は+10、13から6は-7。この差の数列は -1, 0, +10, -7 で、特に規則性が見えません。

あるいは、各数字自体に何か規則があるか。4,3,3,13,6...

4 +3=7, 3+3=6, 3+13=16, 13+6=19… これも不明。

別の角度から、これらの数字を何かのコードと見るか、例えば、画数を別の方法で数える(異なる字体の場合)可能性もありますが、一般的な画数では上記の通りです。

もしくは、各文字の部首の画数など、別の要素を考慮しているかもしれませんが、これも推測が難しいです。

さらに、「以下の数列」という言葉のローマ字の文字数や、何らかの変換を試みることも考えられますが、これも根拠に欠けます。

このように、問題文に数列が提示されていないため、推測が非常に困難です。ユーザーが何らかのミスで数列を入力し忘れたと考えるのが自然ですが、もしこれが意図的な問題であるなら、非常にユニークなケースと言えます。

いずれにせよ、正確な回答のためには数列の具体的な数値が必要です。しかし、現状ではそれがないため、問題の不備を指摘するか、あるいはユーザーが想定していたかもしれない一般的な数列の例を挙げて説明するしかありません。

例えば、典型的な数列問題として、等差数列(2,4,6,8...なら次は10)、等比数列(3,9,27...なら次は81)、階差数列(1,3,6,10...なら次は15)などが考えられます。あるいはフィボナッチ数列(1,1,2,3,5...なら次は8)などです。

しかし、ユーザーが具体的にどの数列を指しているのか不明なため、これらの中から適当に選ぶことはできません。また、問題文の冒頭に「以下の数列」とあるため、何らかの数列が存在するはずですが、実際には記載されていません。

この状況を踏まえると、おそらくユーザーは質問の入力時に数列を添付するのを忘れたか、テキストのコピーでミスが発生した可能性が高いです。したがって、適切な対応としては、数列の提示を求めることが最善です。

ただし、この思考プロセスを日本語で記述することが求められているため、このように問題の不備を指摘しつつ、可能な限り推測を試みるプロセスを説明します。

結論として、数列が提示されていないため正確な回答は不可能ですが、もし典型的な数列を例示するなら、その一例を挙げることはできます。例えば、等差数列の場合、「2, 4, 6, 8...」の次は「10」と予想されます。しかし、これがユーザーの意図した数列かは不明です。

以上のことから、問題文に数列が記載されていないため、次の値を予想できないことを指摘し、数列の入力を求めることが適切だと考えます。


ここまで悩んだ上で、最終的に、

問題文に数列が記載されていないため、次の値を予想できません。数列の具体的な数値をご提供いただければ、そのパターンを分析し次の値を予想いたします。例えば、「2, 4, 6, 8...」のような等差数列であれば次は「10」、「1, 1, 2, 3, 5...」のようなフィボナッチ数列であれば次は「8」と推測されますが、実際の数列がないと正確な回答は不可能です。数列の入力をお願いいたします。


という答えを出してきました。
考えすぎやろw